Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 749
Filtrar
1.
Sensors (Basel) ; 24(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38544002

RESUMO

Ofloxacin (OFL) is widely used in animal husbandry and aquaculture due to its low price and broad spectrum of bacterial inhibition, etc. However, it is difficult to degrade and is retained in animal-derived food products, which are hazardous to human health. In this study, a simple and efficient method was developed for the detection of OFL residues in meat products. OFL coupled with amino magnetic beads by an amination reaction was used as a stationary phase. Aptamer AWO-06, which showed high affinity and specificity for OFL, was screened using the exponential enrichment (SELEX) technique. A fluorescent biosensor was developed by using AWO-06 as a probe and graphene oxide (GO) as a quencher. The OFL detection results could be obtained within 6 min. The linear range was observed in the range of 10-300 nM of the OFL concentration, and the limit of the detection of the sensor was 0.61 nM. Furthermore, the biosensor was stored at room temperature for more than 2 months, and its performance did not change. The developed biosensor in this study is easy to operate and rapid in response, and it is suitable for on-site detection. This study provided a novel method for the detection of OFL residues in meat products.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Produtos da Carne , Animais , Humanos , Ofloxacino/química , Alérgenos , Aptâmeros de Nucleotídeos/química , Separação Imunomagnética , Técnicas Biossensoriais/métodos , Técnica de Seleção de Aptâmeros/métodos
2.
Biophys Chem ; 309: 107218, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38547671

RESUMO

Nucleic acid aptamers have captivated the attention of analytical and medicinal scientists globally due to their several advantages as recognition molecules over conventional antibodies because of their small size, simple and inexpensive synthesis, broad target range, and high stability in varied environmental conditions. These recognition molecules can be chemically modified to make them resistant to nuclease action in blood serum, reduce rapid renel clearance, improve the target affinity and selectivity, and make them amenable to chemically conjugate with a support system that facilitates their selective applications. This review focuses on the development of efficient aptamer candidates and their application in clinical diagnosis and therapeutic applications. Significant advances have been made in aptamer-based diagnosis of infectious and non-infectious diseases. Collaterally, the progress made in therapeutic applications of aptamers is encouraging, as evident from their use in diagnosing cancer, neurodegenerative diseases, microbial infection, and in imaging. This review also updates the progress on clinical trials of many aptamer-based products of commercial interests. The key development and critical issues on the subject have been summarized in the concluding remarks.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos
3.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339091

RESUMO

Blood is one of the most commonly found biological fluids at crime scenes, with the detection and identification of blood holding a high degree of evidential value. It can provide not only information about the nature of the crime but can also lead to identification via DNA profiling. Presumptive tests for blood are usually sensitive but not specific, so small amounts of the substrate can be detected, but false-positive results are often encountered, which can be misleading. Novel methods for the detection of red blood cells based on aptamer-target interactions may be able to overcome these issues. Aptamers are single-stranded DNA or RNA sequences capable of undergoing selective antigen association due to three-dimensional structure formation. The use of aptamers as a target-specific moiety poses several advantages and has the potential to replace antibodies within immunoassays. Aptamers are cheaper to produce, display no batch-to-batch variation and can allow for a wide range of chemical modifications. They can help limit cross-reactivity, which is a hindrance to current forensic testing methods. Within this study, a modified Systematic Evolution of Ligands by Exponential Enrichment (SELEX) process was used to generate aptamers against whole red blood cells. Obtained aptamer pools were analysed via massively parallel sequencing to identify viable sequences that demonstrate a high affinity for the target. Using bioinformatics platforms, aptamer candidates were identified via their enrichment profiles. Binding characterisation was also conducted on two selected aptamer candidates via fluorescent microscopy and qPCR to visualise and quantify aptamer binding. The potential for these aptamers is broad as they can be utilised within a range of bioassays for not only forensic applications but also other analytical science and medical applications. Potential future work includes the incorporation of developed aptamers into a biosensing platform that can be used at crime scenes for the real-time detection of human blood.


Assuntos
Aptâmeros de Nucleotídeos , DNA de Cadeia Simples , Humanos , DNA de Cadeia Simples/genética , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Ligantes , Eritrócitos/metabolismo
4.
Chem Commun (Camb) ; 60(20): 2772-2775, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38353965

RESUMO

To accelerate the discovery of high-affinity aptamers, a magnetically activated continuous deflection (MACD) chip was designed. The MACD chip could achieve dynamic selection in a continuous flow, which meant that the binding and separation were carried out consecutively. Dynamic selection could make selection efficient. Low-affinity sequences could be eluted in time and high-affinity sequences could be enriched via dynamic selection. The stringency of the conditions could be further increased by lowering the target concentration in the dynamic selection. Finally, a C.al3 aptamer with high-affinity and high-specificity for Candida albicans (C. albicans) was obtained through six rounds of selection. Its dissociation constant (Kd) was 7.9 nM. This demonstrated that dynamic selection using a MACD chip was an effective method for high-affinity aptamer selection.


Assuntos
Aptâmeros de Nucleotídeos , Microfluídica , Microfluídica/métodos , Técnica de Seleção de Aptâmeros/métodos , Análise de Sequência com Séries de Oligonucleotídeos
5.
J Chromatogr A ; 1719: 464699, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382212

RESUMO

Aptamers have shown great promise as oligonucleotide-based affinity ligands for various medicinal and industrial applications. A critical step in the production of DNA aptamers via selective enhancement of ligands by exponential enrichment (SELEX) is the generation of ssDNA from dsDNA. There are a number of caveats associated with current methods for ssDNA generation, which can lower success rates of SELEX experiments. They often result in low yields thereby decreasing diversity or fail to eliminate parasitic PCR by-products leading to accumulation of by-products from round to round. Both contribute to the failure of SELEX protocols and therefore potentially limit the impact of aptamers compared to their peptide-based antibody counterparts. We have developed a novel method using ion pair reversed phase HPLC (IP RP HPLC) employed under denaturing conditions for the ssDNA re-generation stage of SELEX following PCR. We have utilised a range of 5' chemical modifications on PCR primers to amplify PCR fragments prior to separation and purification of the DNA strands using denaturing IP RP HPLC. We have optimised mobile phases to enable complete denaturation of the dsDNA at moderate temperatures that circumvents the requirement of high temperatures and results in separation of the ssDNA based on differences in their hydrophobicity. Validation of the ssDNA isolation and purity assessment was performed by interfacing the IP RP HPLC with mass spectrometry and fluorescence-based detection. The results show that using a 5' Texas Red modification on the reverse primer in the PCR stage enabled purification of the ssDNA from its complimentary strand via IP RP HPLC under denaturing conditions. Additionally, we have confirmed the purity of the ssDNA generated as well as the complete denaturation of the PCR product via the use of mass-spectrometry and fluorescence analysis therefore proving the selective elimination of PCR by-products and the unwanted complementary strand. Following lyophilisation, ssDNA yields of up to 80% were obtained. In comparison the streptavidin biotin affinity chromatography also generates pure ssDNA with a yield of 55%. The application of this method to rapidly generate and purify ssDNA of the correct size, offers the opportunity to improve the development of new aptamers via SELEX.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Cromatografia Líquida de Alta Pressão , Técnica de Seleção de Aptâmeros/métodos , DNA de Cadeia Simples , Estreptavidina/química , Estreptavidina/genética , Biotina/química , Biotina/genética , Biotina/metabolismo , Aptâmeros de Nucleotídeos/química
6.
Anal Chem ; 96(8): 3429-3435, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38351845

RESUMO

The subtypes of hematological malignancies (HM) with minimal molecular profile differences display an extremely heterogeneous clinical course and a discrepant response to certain treatment regimens. Profiling the surface protein markers offers a potent solution for precision diagnosis of HM by differentiating among the subtypes of cancer cells. Herein, we report the use of Cell-SELEX technology to generate a panel of high-affinity aptamer probes that are able to discriminate subtle differences among surface protein profiles between different HM cells. Experimental results show that these aptamers with apparent dissociation constants (Kd) below 10 nM display a unique recognition pattern on different HM subtypes. By combining a machine learning model on the basis of partial least-squares discriminant analysis, 100% accuracy was achieved for the classification of different HM cells. Furthermore, we preliminarily validated the effectiveness of the aptamer-based multiparameter analysis strategy from a clinical perspective by accurately classifying complex clinical samples, thus providing a promising molecular tool for precise HM phenotyping.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias Hematológicas , Humanos , Aptâmeros de Nucleotídeos/metabolismo , Análise Discriminante , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Proteínas de Membrana , Técnica de Seleção de Aptâmeros/métodos
7.
Angew Chem Int Ed Engl ; 63(16): e202318665, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38253971

RESUMO

Systematic evolution of ligands by exponential enrichment (SELEX) has been used to discover thousands of aptamers since its development in 1990. Aptamers are short single-stranded oligonucleotides capable of binding to targets with high specificity and selectivity through structural recognition. While aptamers offer advantages over other molecular recognition elements such as their ease of production, smaller size, extended shelf-life, and lower immunogenicity, they have yet to show significant success in real-world applications. By analyzing the importance of structured library designs, reviewing different SELEX methodologies, and the effects of chemical modifications, we provide a comprehensive overview on the production of aptamers for applications in drug delivery systems, therapeutics, diagnostics, and molecular imaging.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Biblioteca Gênica , Ligantes , Sistemas de Liberação de Medicamentos
8.
Chembiochem ; 25(4): e202300656, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38180305

RESUMO

Cytidine and uridine are two essential pyrimidine ribonucleotides, and accurate detection of these nucleosides holds significant biological importance. While many aptamers were reported to bind purines, little success was achieved for pyrimidine binding. This study employs the library-immobilization capture-SELEX technique to isolate aptamers capable of selectively binding to cytidine and uridine. First, a selection was performed using a mixture of cytidine and uridine as the target. This selection led to the isolation of a highly selective aptamer for cytidine with a dissociation constant (Kd ) of 0.9 µM as determined by isothermal titration calorimetry (ITC). In addition, a dual-recognition aptamer was also discovered, which exhibited selective binding to both cytidine and uridine. Subsequently, a separate selection was carried out using uridine as the sole target, and the resulting uridine aptamer displayed a Kd of 4 µM based on a thioflavin T fluorescence assay and a Kd of 102 µM based on ITC. These aptamers do not have a strict requirement of metal ions for binding, and they showed excellent selectivity since no binding was observed with their nucleobases or nucleotides. This study has resulted three aptamers for pyrimidines, which can be employed in biosensors and DNA switches.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Uridina , Citidina , Técnica de Seleção de Aptâmeros/métodos , DNA
9.
Biosens Bioelectron ; 249: 116013, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38211466

RESUMO

In practical applications, the structure and performance of aptamers can be influenced by the presence of sample matrices, which interferes with the specific binding between the aptamer and its target. In this work, to obtain aptamer chains resistant to matrix interference, four typical food matrices were introduced as negative selection targets and selection environments in the process of selecting aptamers for Salmonella typhimurium using the systematic evolution of ligands by exponential enrichment (SELEX) technology. As a result, some highly specific candidate aptamers for Salmonella typhimurium (BB-34, BB-37, ROU-8, ROU-9, ROU-14, ROU-24, DAN-3, NAI-12, and NAI-21) were successfully obtained. Based on the characterization results of secondary structure, affinity, and specificity of these candidate aptamers, ROU-24 selected in the pork matrix and BB-34 selected in the binding buffer were chosen to develop label-free fluorescence aptasensors for the sensitive and rapid detection of the Salmonella typhimurium and verify the performance against matrix interference. The ROU-24-based aptasensor demonstrated a larger linear range and better specificity compared to the BB-34-based aptasensor. Meanwhile, the recovery rate of the ROU-24-based aptasensor in real sample detection (ranging from 94.2% to 110.7%) was significantly higher than that of the BB-34-based aptasensor. These results illustrated that the negative selection of food matrices induced in SELEX could enhance specific binding between the aptamer and its target and the performance against matrix interference. Overall, the label-free fluorescence aptasensors were developed and successfully validated in different foodstuffs, demonstrating a theoretical and practical basis for the study of aptamers against matrix interference.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Salmonella typhimurium , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Ligantes
10.
Anal Chem ; 96(6): 2719-2726, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38294352

RESUMO

Aptamers are recognition elements increasingly used for the development of biosensing strategies, especially in the detection of proteins or small molecule targets. Lysozyme, which is recognized as an important biomarker for various diseases and a major allergenic protein found in egg whites, is one of the main analytical targets of aptamer-based biosensors. However, since aptamer-based strategies can be prone to artifacts and data misinterpretation, rigorous strategies for multifaceted characterization of the aptamer-target interaction are needed. In this work, a multitechnique approach has been devised to get further insights into the binding performance of the anti-lysozyme DNA aptamers commonly used in the literature. To study molecular interactions between lysozyme and different anti-lysozyme DNA aptamers, measurements based on a magneto-electrochemical apta-assay, circular dichroism spectroscopy, fluorescence spectroscopy, and asymmetrical flow field-flow fractionation were performed. The reliability and versatility of the approach were proved by investigating a SELEX-selected RNA aptamer reported in the literature, that acts as a positive control. The results confirmed that an interaction in the low micromolar range is present in the investigated binding buffers, and the binding is not associated with a conformational change of either the protein or the DNA aptamer. The similar behavior of the anti-lysozyme DNA aptamers compared to that of randomized sequences and polythymine, used as negative controls, showed nonsequence-specific interactions. This study demonstrates that severe testing of aptamers resulting from SELEX selection is the unique way to push these biorecognition elements toward reliable and reproducible results in the analytical field.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Muramidase , Reprodutibilidade dos Testes , Técnica de Seleção de Aptâmeros/métodos , Anticorpos Antinucleares
11.
Int J Biol Macromol ; 259(Pt 1): 129002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176501

RESUMO

Tumor cell-targeting molecules play a vital role in cancer diagnosis, targeted therapy, and biomarker discovery. Aptamers are emerging as novel targeting molecules with unique advantages in cancer research. In this work, we have developed several DNA aptamers through cell-based systematic evolution of ligands by exponential enrichment (Cell-SELEX). The selected SYL-6 aptamer can bind to a variety of cancer cells with high signal. Tumor tissue imaging demonstrated that SYL-6-Cy5 fluorescent probe was able to recognize multiple clinical tumor tissues but not the normal tissues, which indicates great potential of SYL-6 for clinical tumor diagnosis. Meanwhile, we identified prohibitin 2 (PHB2) as the molecular target of SYL-6 using mass spectrometry, pull-down and RNA interference assays. Moreover, SYL-6 can be used as a delivery vehicle to carry with doxorubicin (Dox) chemotherapeutic agents for antitumor targeted chemotherapy. The constructed SYL-6-Dox can not only selectively kill tumor cells in vitro, but also inhibit tumor growth with reduced side effects in vivo. This work may provide a general tumor cell-targeting molecule and a potential biomarker for cancer diagnosis and targeted therapy.


Assuntos
Aptâmeros de Nucleotídeos , Neoplasias , Humanos , Aptâmeros de Nucleotídeos/metabolismo , Proibitinas , Doxorrubicina/farmacologia , Neoplasias/tratamento farmacológico , Biomarcadores , Técnica de Seleção de Aptâmeros/métodos , Linhagem Celular Tumoral
12.
Anal Chem ; 96(2): 710-720, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38175632

RESUMO

Sterigmatocystin (ST) is a known toxin whose aptamer has rarely been reported because ST is a water-insoluble small-molecule target with few active sites, leading to difficulty in obtaining its aptamer using traditional target fixation screening methods. To obtain aptamer for ST, we incorporated FAM tag size separation into the capture-systematic evolution of ligands by exponential enrichment and combined it with molecular activation for aptamer screening. The screening process was monitored using a quantitative polymerase chain reaction fluorescence amplification curve and recovery of negative-, counter-, and positive-selected ssDNA. The affinity and specificity of the aptamer were verified by constructing an aptamer-affinity column, and the binding sites were predicted using molecular docking simulations. The results showed that the Kd value of the H Seq02 aptamer was 25.3 nM. The aptamer-affinity column based on 2.3 nmol of H Seq02 exhibited a capacity of about 80 ng, demonstrating better specificity than commercially available antibody affinity columns. Molecular simulation docking predicted the binding sites for H Seq02 and ST, further explaining the improved specificity. In addition, circular dichroism and isothermal titration calorimetry were used to verify the interaction between the aptamer and target ST. This study lays the foundation for the development of a new ST detection method.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Esterigmatocistina , Técnica de Seleção de Aptâmeros/métodos , Simulação de Acoplamento Molecular , Ligantes
13.
Int J Biol Macromol ; 257(Pt 1): 128540, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38061523

RESUMO

Xylanases are a group of enzymes that catalyze the hydrolysis of xylan. Xylanases have wide industrial applications, and they can produced by various organisms. In this study, we aimed to develop aptamers for the capture of xylanase produced by a wild-type Aspergillus niger strain. Xylanase was produced by Aspergillus niger in a 5-liter stirred-tank bioreactor and then purified by column chromatography. Magnetic bead-based SELEX (Systematic Evolution of Ligands by Exponential Enrichment) was performed to select DNA aptamers specific to the purified xylanase. After nine rounds of selection, next-generation sequencing (NGS) analysis was performed. Four aptamers, namely AXYL-1, AXYL-2, AXYL-3, and AXYL-4, were identified for further characterization. The binding properties of the selected aptamers were characterized by fluorescence quenching (FQ) analysis and an enzyme-linked aptamer assay (ELAA). The Kd values were found to be in the low µM range. Then, each aptamer was immobilized on streptavidin-coated magnetic particles, and the recovery ratio of xylanase was determined. Although AXYL-1 wasn't effective, AXYL-2, AXYL-3, and AXYL-4 were proven to capture the xylanase. The maximum recovery rate of xylanase was found to be approximately 54 %.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/química , Aspergillus niger , Magnetismo , Fenômenos Físicos , Fenômenos Magnéticos , Técnica de Seleção de Aptâmeros/métodos
14.
Talanta ; 269: 125508, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38070284

RESUMO

Penicillin antibiotics (PENs) play an important role in killing pathogenic bacteria. However, the residues of various penicillin antibiotics in milk gradually accumulate in the human body with the increase of milk intake, which causes direct harm to the human body. Aptamers can be used as recognition element of sensors. It is great significance to use broad-spectrum aptamers for simultaneous detection of PENs. In this study, we reported the screening and identification of DNA aptamers for PENs. The aptamers were screened by graphene oxide-systematic evolution of ligands by exponential enrichment (GO-SELEX). The broad-spectrum aptamers with high affinity and specificity were successfully obtained after 13 rounds of screening. The affinity and specificity of candidate aptamers were analyzed by a GO fluorescence competition method. Further sequence analysis revealed that a truncated 47 nt aptamer (P-11-1) had a higher affinity than the original 79 nt aptamer. The truncated aptamer P-11-1 was used as a recognition element, and an electrochemical aptasensor was prepared using gold nanoparticles (AuNPs) combined with ferroferric oxide-multi walled carbon nanotube (Fe3O4-MWCNTs) complex. The results showed that the developed aptasensor achieved the simultaneous detection of PENs in milk samples across a concentration range of 2 nM-10,000 nM, achieving a limit of detection of 0.667 nM. This methodology provided a simple and sensitive new thinking for antibiotic multi-residue detection.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Humanos , Animais , Leite/química , Penicilinas/análise , Ouro/química , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
15.
Chembiochem ; 25(1): e202300539, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37837257

RESUMO

Chemical modification of aptamers is an important step to improve their performance and stability in biological media. This can be performed either during their identification (mod-SELEX) or after the in vitro selection process (post-SELEX). In order to reduce the complexity and workload of the post-SELEX modification of aptamers, we have evaluated the possibility of improving a previously reported, chemically modified aptamer by combining enzymatic synthesis and nucleotides bearing bioisosteres of the parent cubane side-chains or substituted cubane moieties. This method lowers the synthetic burden often associated with post-SELEX approaches and allowed to identify one additional sequence that maintains binding to the PvLDH target protein, albeit with reduced specificity. In addition, while bioisosteres often improve the potency of small molecule drugs, this does not extend to chemically modified aptamers. Overall, this versatile method can be applied for the post-SELEX modification of other aptamers and functional nucleic acids.


Assuntos
Aptâmeros de Nucleotídeos , Ácidos Nucleicos , Técnica de Seleção de Aptâmeros/métodos , Aptâmeros de Nucleotídeos/química , DNA
16.
Talanta ; 269: 125535, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091739

RESUMO

Numerous aptamers against various targets have been identified through the technology of systematic evolution of ligands by exponential enrichment (SELEX), but the affinity of these aptamers are often insufficient due to the limitations of SELEX. Therefore, a more rational in silico screening strategy (ISS) was developed for efficient screening of high affinity aptamers, which took shape complementarity and thermodynamic stability into consideration. Neuron specific enolase (NSE), a tumor marker, was selected as the target molecule. In the screening process, three aptamer candidates with good shape complementarity, lower ΔG values, and higher ZDOCK scores were produced. The dissociation constant (Kd) of these candidates to NSE was determined to be 10.13 nM, 14.82 nM, and 2.76 nM, respectively. Each of them exhibited higher affinity to NSE than the parent aptamer (Kd = 23.83 nM). Finally, an antibody-free fluorescence aptasensor assay, based on the aptamer with the highest affinity, P-5C8G, was conducted, resulting in a limit of detection (LOD) value of 1.8 nM, which was much lower than the parental aptamer (P, LOD = 12.6 nM). The proposed ISS approach provided an efficient and universal strategy to improve the aptamer to have a high affinity and good analytical utility.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros/métodos , Limite de Detecção , Biomarcadores Tumorais
17.
J Am Chem Soc ; 146(1): 868-877, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38153404

RESUMO

Great effort has been made to encapsulate or coat living mammalian cells for a variety of applications ranging from diabetes treatment to three-dimensional printing. However, no study has reported the synthesis of a biomimetic bacterial capsule to display high-affinity aptamers on the cell surface for enhanced cell recognition. Therefore, we synthesized an ultrathin alginate-polylysine coating to display aptamers on the surface of living cells with natural killer (NK) cells as a model. The results show that this coating-mediated aptamer display is more stable than direct cholesterol insertion into the lipid bilayer. The half-life of the aptamer on the cell surface can be increased from less than 1.5 to over 20 h. NK cells coated with the biomimetic bacterial capsule exhibit a high efficiency in recognizing and killing target cells. Therefore, this work has demonstrated a promising cell coating method for the display of aptamers for enhanced cell recognition.


Assuntos
Aptâmeros de Nucleotídeos , Animais , Aptâmeros de Nucleotídeos/metabolismo , Cápsulas Bacterianas/metabolismo , Biomimética , Membrana Celular/metabolismo , Técnica de Seleção de Aptâmeros/métodos , Mamíferos/metabolismo
18.
J Chem Inf Model ; 64(7): 2290-2301, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38127053

RESUMO

Aptamers are single-stranded DNA or RNA oligos that can bind to a variety of targets with high specificity and selectivity and thus are widely used in the field of biosensing and disease therapies. Aptamers are generated by SELEX, which is a time-consuming procedure. In this study, using in silico and computational tools, we attempt to predict whether an aptamer can interact with a specific protein target. We present multiple data representations of protein and aptamer pairs and multiple machine-learning-based models to predict aptamer-protein interactions with a fair degree of selectivity. One of our models showed 96.5% accuracy and 97% precision, which are significantly better than those of the previously reported models. Additionally, we used molecular docking and SPR binding assays for two aptamers and the predicted targets as examples to exhibit the robustness of the APIPred algorithm. This reported model can be used for the high throughput screening of aptamer-protein pairs for targeting cancer and rapidly evolving viral epidemics.


Assuntos
Aptâmeros de Nucleotídeos , Simulação de Acoplamento Molecular , Aptâmeros de Nucleotídeos/química , Técnica de Seleção de Aptâmeros/métodos
19.
ACS Synth Biol ; 13(1): 319-327, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38127784

RESUMO

Progress in the synthetic biology field is driven by the development of new tools for synthetic circuit engineering. Traditionally, the focus has relied on protein-based designs. In recent years, the use of RNA-based tools has tremendously increased, due to their versatile functionality and applicability. A promising class of molecules is RNA aptamers, small, single-stranded RNA molecules that bind to a target molecule with high affinity and specificity. When targeting bacterial repressors, RNA aptamers allow one to add a new layer to an established protein-based regulation. In the present study, we selected an RNA aptamer binding the bacterial repressor DasR, preventing its binding to its operator sequence and activating DasR-controlled transcription in vivo. This was made possible only by the combination of an in vitro selection and subsequent in vivo screening. Next-generation sequencing of the selection process proved the importance of the in vivo screening for the discovery of aptamers functioning in the cell. Mutational and biochemical studies led to the identification of the minimal necessary binding motif. Taken together, the resulting combination of bacterial repressor and RNA aptamer enlarges the synthetic biology toolbox by adding a new level of regulation.


Assuntos
Aptâmeros de Nucleotídeos , Aptâmeros de Nucleotídeos/metabolismo , Técnica de Seleção de Aptâmeros/métodos , RNA
20.
Anal Chem ; 95(46): 17011-17019, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37946406

RESUMO

Aptamers are promising affinity ligands with considerable applications, such as biosensors, disease diagnosis, therapy, etc. Characterization of aptamer-target binding is important in aptamer selection and aptamer applications. Microscale thermophoresis (MST) is an emerging optical technique for molecular interactions, which monitors fluorescence responses of fluorescent molecules in a microscopic temperature gradient. Harnessing merits in trace sample consumption, high speed, free separation, free immobilization, and ratiometric analysis, MST draws intense wide attention. MST is often applied for aptamer-target binding studies using fluorescently labeled aptamers. However, the MST signal is strongly dependent on fluorophore modifications at aptamers, which brings additional challenges and effects for MST analyzing aptamer affinity. Here, we systematically explored effects of fluorophore modifications (e.g., fluorophore types, fluorophore positions, etc.) of aptamer probes on MST characterizing aptamer-target interactions and identified gaps of MST analysis in aptamer affinity determination, taking aptamers against cadmium ions and aflatoxin B1 as two representatives. The same aptamers with different fluorophore modifications showed distinct MST signals in response magnitudes and signs as well as determined affinities, and some of them failed to respond to target binding and gave false affinity information in MST. A competitive MST method can be used to extract the affinity of unmodified aptamers, excluding effects of fluorophore modification. This work highlights that appropriate fluorophore modification is crucial in MST analysis of aptamer affinity, and caution is needed in MST applications, providing a basis for rational design of the MST method for the reliable molecular interaction study.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Corantes Fluorescentes , Temperatura , Ligantes , Técnica de Seleção de Aptâmeros/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...